NOVEL REACTIONS OF CARBON SUBOXIDE. IV. SYNTHESIS OF SOME N-HYDROXY-2-OXO-2H-1-BENZOPYRAN-3-CARBOXAMIDES

Leonardo Bonsignore, Giuseppe Loy and Mario Secci Istituto di Chimica Farmaceutica e Tossicologica, Università di Cagliari, 09100 Cagliari, Italy

Salvatore Cabiddu

Istituto di Chimica Organica, Università di Cagliari, 09100 Cagliari, Italy

Summary: Some N-hydroxy-2-oxo-2H-1-benzopyran-3-carboxamides have been prepared by reaction of carbon suboxide with 2-hydroxyaryloximes.

As a part of investigations on the use of carbon suboxide in the synthesis of new heterocyclic compounds with potential biological activity^{1,2}, we describe in this paper the synthesis of several N-hydroxy-2-oxo-2H-1-benzopyran-3-carbo-xamides ($\underline{3}a$ -f), in one only step, starting from 2-hydroxyaryloximes ($\underline{1}a$ -f) (Scheme 1).

They are possibly formed through rapid rearrangement reactions of the derivatives which are obtained in a first step of the reaction of direct cycloaddition of carbon suboxide to 2-hydroxyaryloximes³.

The carboxamides $(\underline{3}a-f)$ are converted into the respective carboxylic acids $(\underline{4}a-f)^{4,8}$ by hydrolysis. The results are presented in the Tables 1 and 2.

The structure of derivatives $(\frac{3}{2})$ was determined by analytical and spectroscopic data. In fact, they show a characteristic OH band between 3400 and 3200 cm⁻¹, δ -lactonic C=O bands and bands of extranuclear amidic C=O, bonded in position 3 as from δ -lactonic cycle, between 1820 and 1640 cm⁻¹ ⁹; ¹H-NMR spectra show a NH amidic signal between about δ 9 and δ 11, a signal between about δ 8.1 and δ 5014

8.9 attributed to proton 4 and, moreover, the aromatic protons and the hydroxyl group signals. Finally, mass spectra, besides the molecular ion, show the base peak at (M^+-NHOH) and the peak at $(M^+-CONHOH)$.

Compound	Molecular	Yield	М.р.	I.R. (nujol) cm ⁻¹		Mass data	
No	formula ^a	(%) ^b	(°C)		ν (C=O)	(m/e)	
<u>3</u> a	C ₁₀ H ₇ NO ₄	70	207	3300	1770, 1720,	205 (M ⁺), 173,	
-	10 / 4				1640	145	
<u>3</u> b	C ₁₁ H ₉ NO ₅	80	121	3400	1820, 1780,	235 (M ⁺), 203,	
=	1195				1760	175	
<u>3</u> c	C ₁₁ H ₀ NO ₅	76	110	3400	1820. 1800,	235 (M ⁺), 203,	
=	11 9 5				1780, 1760,	175	
					1650		
<u>3</u> d	^C 11 ^H 9 ^{NO} 4	69	135	3440	1770, 1760,	219 (M ⁺), 187,	
=	1194				1730, 1700	159	
30	C H BrNO	88	136	3200	1790, 1770,	283-285 (M ⁺),	
<u>3</u> e	$C_{10}H_6BrnO_4$	00	150	5200	1730, 1770,	251-253, 223-	
					1750, 1700	225	
						. +	
<u>3</u> f	^C 11 ^H 9 ^{NO} 4	67	120	3420	1790, 1760,	319 (M ⁺), 187,	
					1720	159	

Table 1 Preparation of compounds 3

 a) All products gave satisfactory elemental analyses;
b) isolated yield of pure material.

<u>Representative Experimental Procedure</u>: To a stirred solution of 2-hydroxyaryloxime ($\underline{1}$) (0.016 moles) in dry diethyl ether (250 ml), carbon suboxide ($\underline{2}$) (0.016 moles) was added during 2 hours at -70°C. When the addition was complete, the mixture was stirred at 0°C for 4 hours and then allowed to warm and left at room temperature for 3 days with stirring. The precipitate was filtered and crystallized from ethanol to give (3) as tablet shaped yellow crystals. These products, after hydrolysis with 20% aqueous sodium hydroxide, furnished the acids $(\underline{4})$.

SCHEME 1

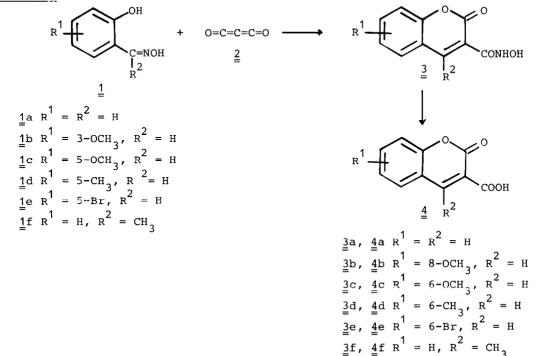
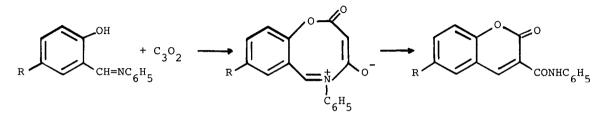


Table 2

80 MHz-¹H-NMR spectral data of compounds $\underline{3}$, δ ppm^a


Compound No <u>3</u> a	R ¹	R ²	Ar-H	ОН	NH	
		8.92 (s, 1H)	8.05-6.86 (m, 4H)	10.79 (s)	10.36 (s)	
<u>3</u> b	3.80 (s, 3H)	8.15 (s, 1H)	7.42-6.58 (m, 3H)	9.12 (s)	9.80 (s)	
<u>3</u> c	3.75 (s, 3H)	8.36 (s, 1H)	7.18-6.63 (m, 3H)	9.00 (s)	9.11 (s)	
<u>3</u> d	3.75 (s, 3H)	8.64 (s, 1H)	7.36-6.80 (m, 3H)	5.11 (s)	9.48 (s)	
<u>3</u> e		8.07 (s, 1H)	7.40-6.76 (m, 3H)	6.25 (s)	9.84 (s)	
₫f		3.63 (s, 3H)	7.63-6.80 (m, 4H)	4.16 (s)	10.98 (s)	

a) $\underline{3}a$ was measured in DMSO-d₆, $\underline{3}b$ and $\underline{3}c$ in CDCl₃, $\underline{3}d$, $\underline{3}e$ and $\underline{3}f$ in (CD₃)₂CO.

ACKNOWLEDGEMENTS. The financial support from C.N.R. (Rome) is gratefully acknowledged.

REFERENCES AND FOOTNOTES

- L. Bonsignore, S. Cabiddu, G. Loy and M. Secci, J. Heterocyclic Chem., <u>19</u>, 1241 (1982).
- 2. L. Bonsignore, S. Cabiddu, G. Loy and M. Secci, Synthesis, 945 (1982).
- 3. This is justified by the fact that during the re-examination of some reactions of carbon suboxide and azomethines^{10,11} we have noticed the formation of mesoionic intermediates which are swiftly converted into coumarin-3-carboxa-midic derivatives:

- 4. L.L. Woods and J. Sapp, J. Org. Chem., 30, 312 (1965).
- 5. W. H. Perkin and R. Roberts, J. Chem. Soc., 105, 2376 (1914).
- 6. P. Chuit and F. Bolsing, Bull. Soc. Chim. France, [3], 35, 76 (1906).
- 7. C. Pandya and R.B.K. Pandya, Proc. Indian Acad. Sci., 18A, 164 (1943).
- 8. 4c: mp 195-195.5°C; IR (nujol): 3360 (OH), 1740, 1670 cm⁻¹ (C=O); ¹H-NMR (CDCl₃), & 9.78 (s, 1H, OH), 8.13 (s, 1H, H-3), 7.32-6.60 (m, 3H, Ar-H), 3.72 (s, 3H, OCH₂); M⁺ (m/e): 220.
- 9. P. Bassignana and C. Cogrossi, Tetrahedron, 20, 2859 (1964).
- L. Bonsignore, G. Loy, A.M. Maccioni and S. Cabiddu, J. Chem. Soc. Chem. Commun., 850 (1982).
- 11. A. J. Boulton, J. Chem. Soc. Chem. Commun., 1328 (1982).

(Received in UK 7 September 1983)